MECH 332 MECHANICS OF MACHINES 3 CR.

A course that deals with the mechanization of motion, kinematics analysis of linkage mechanisms, synthesis of cam-follower mechanisms, gear terminology and types of gears, analysis and synthesis of gear trains, force analysis, and introduction to linkage synthesis; computer aided project. Prerequisite: MECH 230.

Required for all ME students.

Textbook

Additional References

Topics covered
Introduction to mechanism, pairing elements, inversion and transmission of motion.
Position analysis of the four-bar linkage and Grashoff’s Law.
Motion study of the following mechanisms: slider crank, quick-return, Scotch yoke, toggle, straight-line, and pantograph.
Introduction to linkage synthesis, and Freudestein’s Equation.
Cams with radial and flat face followers; displacement curves; analytical design of a disc cam with radial flat-faced and roller follower.
Spur gears: involutometry, characteristics of involute action, interference, backlash and internal gears.
Gear trains: study of regular gear trains and planetary gear trains and their application.
Velocity analysis of linkages: determination of velocity, relative velocity of particles in a common link, relative velocity of coincident particles on separate links and at the point of contact of rolling elements; determination of instantaneous centers of velocity by Kennedy’s Theorem and; determination of velocity by instantaneous centers
Acceleration analysis of linkages: determination of acceleration of particles in a common link, acceleration of coincident particles on separate links; Coriolis Component of acceleration and; relative acceleration of coincident particles at the point of contact of rolling elements.
Course Learning Outcomes

At the end of the course, students will:

Knowledge of the basic principles of motion of various machine elements such as: linkages, cam and followers, gears and gear trains	e	a, c, i	k, f
Ability to determine velocity and acceleration in various mechanisms	a	c, b, e,	
Ability to apply principles of calculus to model and analyze components (gears, valves, and various mechanisms) to solve engineering problems		a	
Knowledge of transmission of motion and Grashof’s Law	e		
Ability to think critically and creatively to solve engineering problems	e		
Ability to use techniques, linkage synthesis and design of cams for particular follower motion	e		

H: High correlation, M: Medium correlation, L: Low correlation.

Class schedule
Three fifty minute lectures per week.

Credits
3.

Person(s) who prepared this description and date of preparation
ME department; Albert A. Kuran Date: March 17, 2009

Date of last revision
March 17, 2009